Вторник, 27.06.2017, 11:49
Приветствую Вас Гость | RSS
(495) 247-82-86, mail@teplorost.ru
Главная | Независимый портал 2017 год | Регистрация | Вход | Добавить сайт в избранное
Тепло и уют в вашем доме!
Форма входа

 
Реклама на сайте

[ Реклама · Частные объявления · Новые сообщения · Участники · Правила форума · Поиск · Цены · Сертификат · Скачать паспорта · Таблицы перевода · Купить · Акты · Журналы · Купить · Прайс 2017 · Сметы · 3D · RSS]
Страница 1 из 11
Независимый портал 2017 год » Полезное » Школа и ВУЗ » Олимпиада по математике 9 класс
Олимпиада по математике 9 класс
EgorДата: Суббота, 24.01.2015, 11:08 | Сообщение # 1
Лейтенант
Группа: Проверенные
Сообщений: 66
Награды: 0
Репутация: 0
Статус: Offline


 
 


Всероссийская и районная олимпиада школьников по математике 9 класс с решениями и ответами



Школьный тур и школьный этап, олимпиадные задания 2014 - 2015 года.

Математические олимпиады вы можете смотреть и решать онлайн, а также можно бесплатно скачать к себе на компьютер и решать в свободное время дома или в школе.

Авторы заданий: Дробышев, Кенгуру, Узорова, Нефедова, Белицкая, Орг, Балаян, Шевкин,

1 и 2 полугодие. Школа России. ФГОС

Скачать ответы и решения

1 тур

1. Найти количество натуральных чисел, не превосходящих 1000,
не делящихся ни на 7, ни на 11.

2. На листе бумаги написаны тридцать три минуса. За один раз можно изменить любые четыре из уже написанных знаков на противоположные - минус на плюс и наоборот.
Можно ли за несколько раз добиться, чтобы все знаки стали плюсами?

3. Расставить на шахматной доске 8 на 8 клеток несколько коней так, чтобы каждый из них бил ровно четырёх других.

4. В выпуклом четырёхугольнике ABCD углы А и D равны, а серединные перпендикуляры к сторонам АВ и CD пересекаются на стороне AD.
Доказать, что АС=BD.

5. Найти все простые числа р такие, что числа р +10 и р + 14 также просты.

2 тур

1. Можно ли выписать в ряд семь некоторых целых чисел так, чтобы сумма любых трёх идущих подряд чисел была отрицательной, а сумма всех - положительной?

2. Решить уравнение: ( х + а ) ( х + 2а ) ( х + За ) ( х + 4а ) = 360а 4.

3. Пусть точки Р и О - основания перпендикуляров, опущенных из вершины В треугольника АВС на биссектрисы углов ВАС и ВСА соответственно, а точки М и N - середины сторон АВ и ВС.
Доказать, что длина ломаной PMNQ равна половине периметра треугольника АВС.

4. В некоторой трапеции длина одной из диагоналей равна сумме длин оснований трапеции, а угол между диагоналями равен 60 градусов. Доказать, что эта трапеция равнобокая.

5. Найти все трехзначные числа, которые в 12 раз больше суммы своих цифр.

6. Перед Бабой Ягой и Кащеем Бессмертным лежат две кучи мухоморов, в одной 100 штук, а в другой 150 штук. Эти персонажи по очереди берут грибы из куч, за один раз можно взягь любое ненулевое число грибов из одной из куч. Пропускать ход нельзя, выигрывает тот, после хода которого грибов не останется. Первой ходит Баба Яга.
Кто из игроков выиграет при правильной игре?

3 тур

1. Найти все решения уравнения |х2 – 4| + |х2 – 9| = 5.

2. Баба Яга и Кащей Бессмертный собирали мухоморы. Общее число крапинок на мухоморах Бабы Яги оказалось в 13 раз больше, чем у Кащея. Когда Баба Яга отдала Кащею мухомор с наименьшим количеством крапинок, на её мухоморах стало в 8 раз больше крапинок, чем у Кащея.
Доказать, что сначала у Бабы Яги было не более 23 мухоморов.

3. Пусть Р и Q — середины сторон АВ и CD четырёхугольника ABCD, М и N — середины диагоналей АС и BD.
Докажите, что если прямые MN и PQ перпендикулярны, то ВС = AD.

4. Перед боем у Василия Ивановича и Петьки было поровну патронов. Василий Иванович израсходовал в бою в 8 раз меньше патронов, чем Петька, а осталось у него в 9 раз больше патронов, чем у Петьки. Доказать, что изначально количество патронов у Василия Ивановича делилось на 71.

5. Один рабочий может выполнить работу за 4 часа, а другой — за 6 часов.
Сколько должен работать третий рабочий, чтобы сделать эту работу, если его производительность равна средней производительности первых двух.
Фото: 6912672.jpg(17Kb)
 
 
EgorДата: Суббота, 24.01.2015, 11:09 | Сообщение # 2
Лейтенант
Группа: Проверенные
Сообщений: 66
Награды: 0
Репутация: 0
Статус: Offline


 
 


Олимпиадные задания по математике 9 класс. Вариант 2

Олимпус - Зимняя, осенняя и весенняя сессия

Городской и муниципальный этап

1.

Корень из числа 49 можно извлечь по такой «формуле»: ? 49 = 4 + ?9.
Существуют ли другие двузначные числа, квадратные корни из которых извлекаются аналогичным образом и являются целыми? Укажите все такие двузначные числа.

2.

ABC – равнобедренный треугольник с вершиной А. ?А=27°. Точка D симметрична точке В относительно А. Чему равен угол ?BCD?

3.

Мальчик стоит на автобусной остановке и мёрзнет, а автобуса нет. Ему хочется пройтись до следующей остановки. Мальчик бегает вчетверо медленнее автобуса и может увидеть автобус на расстоянии 2 км. До следующей остановки ровно километр. Имеет ли смысл идти, или есть риск упустить автобус?

4.

Про числа a и b известно, что a = b+ 1. Может ли оказаться так, что a4 = b4?

5.

Какое наименьшее количество клеток квадрата 5 x 5 нужно закрасить, чтобы в любом квадрате 3 x 3, являющемся его частью, было ровно 4 закрашенных клетки?

6.

Найти все решения уравнения |х2 – 4| + |х2 – 9| = 5.

7.

Баба Яга и Кащей Бессмертный собирали мухоморы. Общее число крапинок на мухоморах Бабы Яги оказалось в 13 раз больше, чем у Кащея. Когда Баба Яга отдала Кащею мухомор с наименьшим количеством крапинок, на её мухоморах стало в 8 раз больше крапинок, чем у Кащея. Доказать, что сначала у Бабы Яги было не более 23 мухоморов.

8.

Пусть Р и Q — середины сторон АВ и CD четырёхугольника ABCD, М и N — середины диагоналей АС и BD. Докажите, что если прямые MN и PQ перпендикулярны, то ВС = AD.

9.

Перед боем у Василия Ивановича и Петьки было поровну патронов. Василий Иванович израсходовал в бою в 8 раз меньше патронов, чем Петька, а осталось у него в 9 раз больше патронов, чем у Петьки. Доказать, что изначально количество патронов у Василия Ивановича делилось на 71.

10.

Один рабочий может выполнить работу за 4 часа, а другой — за 6 часов. Сколько должен работать третий рабочий, чтобы сделать эту работу, если его производительность равна средней производительности первых двух.

 
 
EgorДата: Суббота, 24.01.2015, 11:10 | Сообщение # 3
Лейтенант
Группа: Проверенные
Сообщений: 66
Награды: 0
Репутация: 0
Статус: Offline


 
 


Решение задач по математике 9 класс

1.

Да, существуют: 64 и 81.

Рассмотрим все двузначные числа, являющиеся квадратами целых чисел. Корни из чисел 16, 25 и 36 не могут быть извлечены указанным способом, так как квадратные корни из их последних цифр не являются целыми. Числа 49, 64 и 81 являются решениями.
Ответ в задаче не изменится, если не требовать, чтобы корень был целым. 10a + b = a2 + 2a?b + b. Так как в левой части равенства стоит целое число, то и число, стоящее в правой части, должно быть целым. Отсюда следует, что b = 0, 1, 4 или 9, то есть a + ?b - целое число.

2.

Ответ: 90°.

3.

Ответ: имеет смысл идти.
Пусть мальчик пошел к следующей остановке и в какой-то момент заметил автобус. Скорость автобуса в четыре раза больше скорости мальчика, поэтому за одно и то же время автобус проезжает расстояние в четыре раза больше. Пусть мальчик пробежит х км, тогда автобус проедет 4х км. В случае, если они двигаются навстречу друг другу, до встречи с автобусом мальчик пробежит 2/5 км. Это значит, что, отойдя от остановки не более, чем на 2/5 км, мальчик сможет успеть на автобус, побежав назад.
В случае, если автобус догоняет мальчика, мальчик успеет пробежать 2/3 км до момента, когда автобус его догонит.
Это означает, что он сможет успеть на автобус, если до следующей остановки осталось не более 2/3 км, то есть, если он успел пройти не менее 1/3 км до момента, когда заметил автобус. Так как, 1/3 < 2/5 , то у мальчика всегда будет возможность успеть на автобус и имеет смысл идти.

4.

Ответ: да, может. Пусть а = 1/2, b = -1/2, тогда a4 = b4 = 1/16. Можно доказать, что этот пример – единственный (от учащихся это не требуется). Действительно, a4 = b4 ? |a| = |b|. Случай a = b невозможен, случай a = -b дает указанный пример.

5.

Ответ: 7 клеток.

 
 
Независимый портал 2017 год » Полезное » Школа и ВУЗ » Олимпиада по математике 9 класс
Страница 1 из 11
Поиск:

 
 
Балансировочные вентили Заслонки шиберные Фильтры Краны шаровые Вентили запорные Мембранные баки Клиновые задвижки Затворы межфланцевые Клапана обратные Конденсатоотводчики Предохранительные клапаны Гибкие вставки Электромагнитные вентили Сепараторы пара Насосное оборудование Манометры и термометры Поплавковые клапаны Фланцы и заглушки Регулирующие вентили Мягкие пускатели Воздушники Стекла смотровые Редукционные вентили Гидрострелки Электроприводы Шкафы управления
 
Реклама на сайте

 
Последние темы на форуме:
 
  • Сериал Фамильные ценности - Описание и содержание всех серий
  • Сериал Пороги - Описание и содержание всех серий
  • Электронный кабинет страхователя ФСС
  • Электронные больничные с 1 июля 2017 года
  • Сериал Отель Элеон. 2 сезон - Описание и содержание серий
  • Сериал Отель Элеон. 3 сезон - Описание и содержание серий
  • Сериал Плюс любовь - Описание и содержание всех серий
  • Путин еле успел увернуться: В него летел топор
  • Сериал Красные браслеты - Описание и содержание всех серий
  • Сериал Погоня за прошлым - Описание и содержание всех серий
  • Рама Камаза р/у модели в масштабе 1/10
  • Кабина Камаза р/у модели в масштабе 1/10
  • Колеса на р/у машины Ралли HSP Kutiger 4WD
  • Дека HSP
  • Регулятор ESC TSKY 60A-SL
  • Регулятор Brushless ESC 60А
  • Рулевые тяги AXIAL SCX10
  • Мосты на р/у машины HPI Wheely King 4x4 масштаба 1/12
  • Раллийные колеса на р/у машины масштаба 1/10
  • Колеса на р/у грузовые машины масштаба 1/10 или 1/8
  • Колеса SUPER SWAMPER масштаба 1/10
  • Axial SCX-10 ХАММЕР
  • Блок звука для имитации работающего двигателя р/у машинок
  • Звуковой модуль для р/у масштабных моделей
  • Газосварка.Замена радиаторов,батарей отопления,труб в Москве
  •  
     
     
     
    Лучшие товары дня
     
    Самые популярные сегодня товары в Интернет Магазине:
     
    Кран Навал 284 440
    869935.00руб.
    Кран Навал 285 574
    30965.00руб.
    Кран Genebre 2014 03
    478.50руб.
    Вентиль V229-040
    4506.70руб.
    71.102.400 кран Ballomax
    748556.60руб.
    Кран Genebre 2008 03
    880.00руб.

    Рейтинг@Mail.ru Рейтинг арматурных сайтов. ARMTORG.RU Яндекс.Метрика
    Отопление, водоснабжение, газоснабжение, канализация © 2003 - 2016
    Администрация сайта не несет ответственности за действия и содержание размещаемой информации пользователей: комментарии, материалы, сообщения и темы на форуме, публикации, объявления и т.д.