ГДЗ по Геометрии. 10-11 класс. Атанасян. Рабочая тетрадь
|
|
Чилик | Дата: Среда, 25.01.2017, 17:56 | Сообщение # 16 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
|
147. Из точки М проведен перпендикуляр МВ к плоскости прямоугольника ABCD. Докажите, что треугольники AMD и MCD прямоугольные.
148. Прямая АК перпендикулярна к плоскости правильного треугольника ABC, М — середина стороны ВС. Докажите, что MK⊥BC.
149. Отрезок AD перпендикулярен к плоскости равнобедренного треугольника ABC. Известно, что АВ =АС = 5 см, ВС= 6 см, AD = 12 см. Найдите расстояния от концов отрезка AD до прямой ВС.
150. Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскости прямоугольника. Известно, что KD = 6 см, КВ = 7 см, КС=9 см. Найдите: а) расстояние от точки К до плоскости прямоугольника ABCD; б) расстояние между прямыми АК и CD
151. Прямая CD перпендикулярна к плоскости треугольника ABC. Докажите, что: а) треугольник ABC является проекцией треугольника ABD на плоскость АВС; б) если CH — высота треугольника ABC, то DH — высота треугольника ABD.
152. Через вершину В квадрата ABCD проведена прямая BF, перпендикулярная к его плоскости. Найдите расстояния от точки F до прямых, содержащих стороны и диагонали квадрата, если BF = 8 дм, АВ = 4 дм.
153. Докажите, что прямая а, проведенная в плоскости а через основание М наклонной AM перпендикулярно к ней, перпендикулярна к ее проекции НМ (см. рис. 53).
154. Прямая BD перпендикулярна к плоскости треугольника ABC. Известно, что BD = 9 см, АС=10 см, ВС = ВА = 13 см. Найдите: а) расстояние от точки D до прямой AC; б) площадь треугольника ACD.
155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABC проведена прямая СМ, перпендикулярная к его плоскости. Найдите расстояние от точки М до прямой АВ, если АС = 4 см, а СМ = 2 √7 см.
156. Один из катетов прямоугольного треугольника ABC равен т, а острый угол, прилежащий к этому катету, равен φ. Через вершину прямого угла С проведена прямая CD, перпендикулярная к плоскости этого треугольника, CD = n. Найдите расстояние от точки D д
|
|
| |
Чилик | Дата: Среда, 25.01.2017, 17:58 | Сообщение # 17 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| 157. Прямая ОК перпендикулярна к плоскости ромба ABCD, диагонали которого пересекаются в точке О. а) Докажите, что расстояния от точки К до всех прямых, содержащих стороны ромба, равны, б) Найдите это расстояние, если ОК = 4,5 дм, АС = 6 дм, BD = 8 дм.
158. Через вершину В ромба ABCD проведена прямая ВМ, перпендикулярная к его плоскости. Найдите расстояния от точки М до прямых, содержащих стороны ромба, если AB = 25 см, ∠BAD = 60°, BM =12,5 см.
159. Прямая ВМ перпендикулярна к плоскости прямоугольника ABCD. Докажите, что прямая, по которой пересекаются плоскости ADM и ВСМ, перпендикулярна к плоскости АВМ.
160. Концы отрезка АВ лежат на двух параллельных плоскостях, расстояние между которыми равно d, причем d<AB. Докажите, что проекции отрезка АВ на эти плоскости равны. Найдите эти проекции, если АВ = 13 см, d=5 см.
161. Луч ВА не лежит в плоскости неразвернутого угла CBD. Докажите, что если ∠АВС= ∠ABD, причем ∠ABC < 90°, то проекцией луча ВА на плоскость CBD является биссектриса угла CBD.
162. Прямая MA проходит через точку А плоскости α и образует с этой плоскостью угол φ0≠90°. Докажите, что φ0 является наименьшим из всех углов, которые прямая МА образует с прямыми, проведенными в плоскости α через точку А.
163. Наклонная АМ, проведенная из точки А к данной плоскости, равна d. Чему равна проекция этой наклонной на плоскость, если угол между прямой АМ и данной плоскостью равен: а) 45°; б) 60°; в) 30°?
164. Под углом φ к плоскости α проведена наклонная. Найдите φ, если известно, что проекция наклонной вдвое меньше самой наклонной.
165. Из точки А, удаленной от плоскости γ на расстояние d, проведены к этой плоскости наклонные АВ и АС под углом 30° к плоскости. Их проекции на плоскость γ образуют угол в 120°. Найдите ВС.
|
|
| |
Чилик | Дата: Среда, 25.01.2017, 18:04 | Сообщение # 18 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| Глава II Перпендикулярность прямых и плоскостей. §3 Двугранный угол. Перпендикулярность плоскостей.
166. Неперпендикулярные плоскости α и β пересекаются по прямой MN. В плоскости β из точки А проведен перпендикуляр АВ к прямой MN и из той же точки А проведен перпендикуляр АС к плоскости α. Докажите, что ∠ABC — линейный угол дву
167. В тетраэдре DABС все ребра равны, точка М— середина ребра АС. Докажите, что ∠DMB—линейный угол двугранного угла BACD.
168. Двугранный угол равен φ. На одной грани этого угла лежит точка, удаленная на расстояние d от плоскости другой грани. Найдите расстояние от этой точки до ребра двугранного угла.
169. Даны два двугранных угла, у которых одна грань общая, а две другие грани являются различными полуплоскостями одной плоскости. Докажите, что сумма этих двугранных углов равна 180°.
170. Из вершины В треугольника ABC, сторона АС которого лежит в плоскости а, проведен к этой плоскости перпендикуляр BB1. Найдите расстояния от точки В до прямой АС и до плоскости α, если АВ = 2 см, ∠ВАС= 150° и двугранный угол ВАСВ1 равен 45°.
171. Гипотенуза прямоугольного равнобедренного треугольника лежит в плоскости а, а катет наклонен к этой плоскости под углом 30°. Найдите угол между плоскостью α и плоскостью треугольника.
172. Катет АС прямоугольного треугольника ABC с прямым углом С лежит в плоскости α, а угол между плоскостями α и ABC равен 60°. Найдите расстояние от точки В до плоскости α, если АС = 5 см, АВ = 13 см.
173. Ребро CD тетраэдра ABCD перпендикулярно к плоскости ABC, АВ = ВС = АС = 6, BD = 3√7. Найдите двугранные углы DACB, DABC, BDCA.
174. Найдите двугранный угол ABCD тетраэдра ABCD, если углы DAB, DAC и ACB прямые, AC = СВ = 5, DB = 5√5.
175. Докажите, что если все ребра тетраэдра равны, то все его двугранные углы также равны. Найдите эти углы.
176. Через сторону AD ромба ABCD проведена плоскость ADM так, что двугранный угол BADM равен 60°. Найдите сторону ромба, если ∠BAD = 45° и расстояние от точки В до плоскости ADM равно 4√3.
|
|
| |
Чилик | Дата: Среда, 25.01.2017, 18:05 | Сообщение # 19 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| 177. Докажите, что плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.
178. Плоскости α и β взаимно перпендикулярны и пересекаются по прямой с. Докажите, что любая прямая плоскости α, перпендикулярная к прямой с, перпендикулярна к плоскости β.
179. Плоскости α и β взаимно перпендикулярны. Через некоторую точку плоскости α проведена прямая, перпендикулярная к плоскости β. Докажите, что эта прямая лежит в плоскости α.
180. Докажите, что плоскость и не лежащая в ней прямая, перпендикулярные к одной и той же плоскости, параллельны.
181. Плоскости α и β пересекаются по прямой а. Из точки М проведены перпендикуляры МА и MB соответственно к плоскостям α и β. Прямая а пересекает плоскость АМВ в точке С. Докажите, что MC⊥a.
182. Плоскости α и β взаимно перпендикулярны и пересекаются по прямой а. Из точки М проведены перпендикуляры MA и MB к этим плоскостям. Прямая а пересекает плоскость АМВ в точке С. а) Докажите, что четырехугольник АСВМ является прямоугольником,
183. Плоскости α и β пересекаются по прямой а и перпендикулярны к плоскости γ. Докажите, что прямая а перпендикулярна к плоскости γ.
184. Общая сторона АВ треугольников ABC и ABD равна 10 см. Плоскости этих треугольников взаимно перпендикулярны. Найдите CD, если треугольники: а) равносторонние; б) прямоугольные равнобедренные с гипотенузой АВ.
185. Прямая а не перпендикулярна к плоскости α. Докажите, что существует плоскость, проходящая через прямую а и перпендикулярная к плоскости α.
186. Докажите, что существует, и притом только одна, прямая, пересекающая две данные скрещивающиеся прямые а и b и перпендикулярная к каждой из них.
187. Найдите диагональ прямоугольного параллелепипеда, если его измерения равны: а) 1, 1, 2; б) 8, 9, 12; в) √39. 7, 9.
|
|
| |
Чилик | Дата: Среда, 25.01.2017, 18:06 | Сообщение # 20 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| 188. Ребро куба равно а. Найдите диагональ куба.
189. Найдите расстояние от вершины куба до плоскости любой грани, в которой не лежит эта вершина, если: а) диагональ грани куба равна m; б) диагональ куба равна d.
190. Дан куб ABCDA1B1C1D1. Найдите следующие двугранные углы: а) АВВ1С;б) ADD1B; в) А1ВВ1К, где К — середина ребра A1D1.
191. Дан куб ABCDA1B1C1D1. Докажите, что плоскости АВС1 и A1B1D1 перпендикулярны.
192. Найдите тангенс угла между диагональю куба и плоскостью одной из его граней.
193. В прямоугольном параллелепипеде ABCDA1B1C1D1 дано: D1B = d, АС = m, АВ=n. Найдите расстояние между: а) прямой A1C1 и плоскостью ABC; б) плоскостями ABB1 и DCC1; в) прямой DD1 и плоскостью АСС1;
194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащими: а) диагональ куба и ребро куба; б) диагональ куба и диагональ грани куба.
195. Найдите измерения прямоугольного параллелепипеда ABCDA1B1C1D1, если АС1 = 12 см и диагональ BD1 составляет с плоскостью грани AA1D1D угол в 30°, а с ребром DD1 — угол в 45°.
196. Изобразите куб ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через: а) ребро АА1 и перпендикулярной к плоскости BB1D1; б) ребро АВ и перпендикулярной к плоскости CDA1.
|
|
| |
Чилик | Дата: Среда, 25.01.2017, 18:08 | Сообщение # 21 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| Вопросы к главе II Перпендикулярность прямых и плоскостей.
1. Верно ли утверждение: если две прямые в пространстве перпендикулярны к третьей прямой, то эти прямые параллельны? Верно ли это утверждение при условии, что все три прямые лежат в одной плоскости?
2. Параллельные прямые b и c лежат в плоскости α, а прямая а перпендикулярна к прямой b. Верно ли утверждение: а) прямая а перпендикулярна к прямой с; б) прямая а пересекает плоскость α?
3. Прямая а перпендикулярна к плоскости α, а прямая b не перпендикулярна к этой плоскости. Могут ли прямые а и b быть параллельными?
4. Прямая а параллельна плоскости α, а прямая b перпендикулярна к этой плоскости. Верно ли утверждение, что прямые а и b взаимно перпендикулярны?
5. Прямая а параллельна плоскости α, а прямая b перпендикулярна к этой плоскости. Существует ли прямая, перпендикулярная к прямым a и b?
6. Верно ли утверждение, что все прямые, перпендикулярные к данной плоскости и пересекающие данную прямую, лежат в одной плоскости?
7. Могут ли две плоскости, каждая из которых перпендикулярна к третьей плоскости, быть: а) параллельными плоскостями; б) перпендикулярными плоскостями?
8. Можно ли через точку пространства провести три плоскости, каждые две из которых взаимно перпендикулярны?
9. Диагональ квадрата перпендикулярна к некоторой плоскости. Как расположена другая диагональ квадрата по отношению к этой плоскости?
10. Сколько двугранных углов имеет: а) тетраэдр; б) параллелепипед?
|
|
| |
Чилик | Дата: Среда, 25.01.2017, 18:09 | Сообщение # 22 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| Дополнительные задачи к главе II Перпендикулярность прямых и плоскостей.
197. Отрезок ВМ перпендикулярен к плоскости прямоугольника ABCD. Докажите, что прямая CD перпендикулярна к плоскости MBС.
198. Точка А лежит в плоскости α, а точка В удалена от этой плоскости на расстояние 9 см. Точка М делит отрезок АВ в отношении 4:5, считая от точки А. Найдите расстояние от точки М до плоскости α.
199. Точка S равноудалена от вершин прямоугольного треугольника и не лежит в плоскости этого треугольника. Докажите, что прямая SM, где М — середина гипотенузы, перпендикулярна к плоскости треугольника.
200. Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около многоугольника, и перпендикулярна к плоскости многоугольника, равноудалена от вершин этого многоугольника.
201. Найдите угол между скрещивающимися прямыми АВ и PQ, если точки Р и Q равноудалены от концов отрезка АВ.
202. Точка удалена от каждой из вершин прямоугольного треугольника на расстояние 10 см. На каком расстоянии от плоскости треугольника находится эта точка, если медиана, проведенная к гипотенузе, равна 5 см?
203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярная к плоскости треугольника. Найдите расстояние от точки К до сторон треугольника, если АВ=ВС=10 см, АС =12 см, ОК = 4 см.
204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр О этого треугольника, ОМ = а, ∠MCO = φ. Найдите: а) расстояние от точки М до каждой из вершин треугольника ABC и до прямых АВ, ВС и СA; б) длину окружно
205. Через вершину С прямого угла прямоугольного треугольника ABC проведена прямая CD, перпендикулярная к плоскости этого треугольника. Найдите площадь треугольника ABD, если СA =3 дм, СВ = 2 дм, CD= 1 дм.
206. Стороны треугольника равны 17 см, 15 см и 8 см. Через вершину Л меньшего угла треугольника проведена прямая АМ, перпендикулярная к его плоскости. Определите расстояние от точки М до прямой, содержащей меньшую сторону треугольника, если известно, что
207. В треугольнике ABC дано: АВ = ВС = 13 см, AС = 10 см. Точка М удалена от прямых АВ, ВС и АС на 8⅔ см. Найдите расстояние от точки М до плоскости ABC, если ее проекция на эту плоскость лежит внутри треугольника.
|
|
| |
Чилик | Дата: Среда, 25.01.2017, 18:10 | Сообщение # 23 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| 208. Из точки К, удаленной от плоскости α на 9 см, проведены к плоскости α наклонные KL и КМ, образующие между собой прямой угол, а с плоскостью α — углы в 45° и 30° соответственно. Найдите отрезок LM.
209. Углы между равными отрезками АВ и АС и плоскостью α, проходящей через точку А, равны соответственно 40° и 50°. Сравните расстояния от точек В и С до плоскости α.
210. На рисунке 66 двугранные углы НАВР и PABQ равны. Докажите, что каждая точка плоскости АВР равноудалена от плоскостей АВН и ABQ.
211. Плоскости правильного треугольника KDM и квадрата KMNP взаимно перпендикулярны. Найдите DN, если КМ = а.
212. Точка С является проекцией точки D на плоскость треугольника ABC. Докажите, что площадь треугольника ABD равна S/cosα, где S — площадь треугольника ABC, а α — угол между плоскостями ABC и ABD.
213. Правильные треугольники ABC и DBC расположены так, что вершина D проектируется в центр треугольника ABC. Вычислите угол между плоскостями этих треугольников.
214. Проекцией прямоугольника ABCD на плоскость α является квадрат ABC1D1. Вычислите угол φ между плоскостью α и плоскостью прямоугольника ABCD, если АВ:ВС = 1:2.
215. Параллельные прямые АВ и CD лежат в разных гранях двугранного угла, равного 60°. Точки А и D удалены от ребра двугранного угла соответственно на 8 см и 6,5 см. Найдите расстояние между прямыми АВ и CD.
216. Точки А и В лежат на ребре данного двугранного угла, равного 120°. Отрезки АС и ВО проведены в разных гранях и перпендикулярны к ребру двугранного угла. Найдите отрезок CD, если AB=AC = BD = a.
217. Сумма площадей трех граней прямоугольного параллелепипеда, имеющих общую вершину, равна 404 дм2, а его ребра пропорциональны числам 3, 7 и 8. Найдите диагональ параллелепипеда.
|
|
| |
Чилик | Дата: Четверг, 26.01.2017, 11:25 | Сообщение # 24 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| Глава III Многогранники. §1 Понятие многогранника. Призма.
218. Докажите, что: а) у прямой призмы все боковые грани — прямоугольники; б) у правильной призмы все боковые грани — равные прямоугольники.
219. В прямоугольном параллелепипеде стороны основания равны 12 см и 5 см. Диагональ параллелепипеда образует с плоскостью основания угол в 45°. Найдите боковое ребро параллелепипеда.
220. Основанием прямого параллелепипеда является ромб с диагоналями 10 см и 24 см, а высота параллелепипеда равна 10 см. Найдите большую диагональ параллелепипеда.
221. Сторона основания правильной треугольной призмы равна 8 см, боковое ребро равно 6 см. Найдите площадь сечения, проходящего через сторону верхнего основания и противолежащую вершину нижнего основания.
222. Основанием прямой призмы является равнобедренная трапеция с основаниями 25 см и 9 см и высотой 8 см. Найдите двугранные углы при боковых ребрах призмы.
223. Через два противолежащих ребра куба проведено сечение, площадь которого равна 64 √2 см2. Найдите ребро куба и его диагональ.
224. Диагональ правильной четырехугольной призмы наклонена к плоскости основания под углом 60°. Найдите площадь сечения, проходящего через сторону нижнего основания и противолежащую сторону верхнего основания, если диагональ основания равна 4 √2 см.
225. Диагональ правильной четырехугольной призмы образует с плоскостью боковой грани угол в 30°. Найдите угол между диагональю и плоскостью основания.
226. В правильной четырехугольной призме через диагональ основания проведено сечение параллельно диагонали призмы. Найдите площадь сечения, если сторона основания призмы равна 2 см, а ее высота равна 4 см.
227. Основание призмы — правильный треугольник ABC. Боковое ребро АА1 образует равные углы со сторонами основания АС и АВ. Докажите, что: а) ВС⊥АА1; б) СС1В1В — прямоугольник.
228. Основанием наклонной призмы АВСА1В1С1 является равнобедренный треугольник ABC, в котором АС = АВ= 13 см, BС=10 см, а боковое ребро призмы образует с плоскостью основания угол в 45°. Проекцией вершины А1 является точка пересечения медиан треугольника
|
|
| |
Чилик | Дата: Четверг, 26.01.2017, 11:27 | Сообщение # 25 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| 229. В правильной n-угольной призме сторона основания равна а и высота равна h. Вычислите площадь боковой и полной поверхностей призмы, если: а) n = 3, а=10 см, h= 15 см; б) n = 4, а= 12 дм, h = 8 дм; в) n = 6, а =23 см, h = 5 дм; г) n = 5, а = 0,4 м, h =
230. Основание прямой призмы — треугольник со сторонами 5 см и 3 см и углом, равным 120°, между ними. Наибольшая из площадей боковых граней равна 35 см2. Найдите площадь боковой поверхности призмы.
231. Стороны основания прямого параллелепипеда равны 8 см и 15 см и образуют угол в 60°. Меньшая из площадей диагональных сечений* равна 130 см2. Найдите площадь поверхности параллелепипеда.
232. Диагональ прямоугольного параллелепипеда, равная d, образует с плоскостью основания угол φ, а с меньшей боковой гранью — угол α. Найдите площадь боковой поверхности параллелепипеда.
233. Основанием прямой призмы АВСA1B1C1 является прямоугольный треугольник ABC с прямым углом В. Через ребро ВВ1 проведено сечение BB1D1D, перпендикулярное к плоскости грани АA1C1C. Найдите площадь сечения, если AA1 = 10 см, AD = 27 см, DC= 12 см.
234. Основанием прямой призмы является прямоугольный треугольник. Через середину гипотенузы перпендикулярно к ней проведена плоскость. Найдите площадь сечения, если катеты равны 20 см и 21 см, а боковое ребро равно 42 см.
235. Основанием прямой призмы является прямоугольный треугольник с острым углом φ. Через катет, противолежащий этому углу, и через противоположную этому катету вершину основания проведено сечение, составляющее угол Θ с плоскостью основания. Найд
236. Докажите, что площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения** на боковое ребро.
237. Боковое ребро наклонной четырехугольной призмы равно 12 см, а перпендикулярным сечением является ромб со стороной 5 см. Найдите площадь боковой поверхности призмы.
238. В наклонной треугольной призме две боковые грани взаимно перпендикулярны, а их общее ребро, отстоящее от двух других боковых ребер на 12 см и 35 см, равно 24 см. Найдите площадь боковой поверхности призмы.
|
|
| |
Чилик | Дата: Четверг, 26.01.2017, 11:30 | Сообщение # 26 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| Глава III Многогранники. § 2. Пирамида
239. Основанием пирамиды является ромб, сторона которого равна 5 см, а одна из диагоналей равна 8 см. Найдите боковые ребра пирамиды, если высота ее проходит через точку пересечения диагоналей основания и равна 7 см.
240. Основанием пирамиды является параллелограмм, стороны которого равны 20 см и 36 см, а площадь равна 360 см2. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 12 см. Найдите площадь боковой поверхности пирамиды.
241. Основанием пирамиды является параллелограмм со сторонами 5 м и 4 м и меньшей диагональю 3 м. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 2 м. Найдите площадь полной поверхности пирамиды.
242. Основанием пирамиды является квадрат, одно из боковых ребер перпендикулярно к плоскости основания. Плоскость боковой грани, не проходящей через высоту пирамиды, наклонена к плоскости основания под углом 45°. Наибольшее боковое ребро равно 12 см. Найд
243. Основанием пирамиды DABC является треугольник ABC, у которого АВ = АС= 13 см, ВС=10 см; ребро AD перпендикулярно к плоскости основания и равно 9 см. Найдите площадь боковой поверхности пирамиды.
244. Основанием пирамиды DABC является прямоугольный треугольник ABC, у которого гипотенуза АВ равна 29 см, катет АС равен 21 см. Ребро DA перпендикулярно к плоскости основания и равно 20 см. Найдите площадь боковой поверхности пирамиды.
245. Основанием пирамиды является прямоугольник, диагональ которого равна 8 см. Плоскости двух боковых граней перпендикулярны к плоскости основания, а две другие боковые грани образуют с основанием углы 30° и 45°. Найдите площадь поверхности пирамиды.
246. Высота треугольной пирамиды равна 40 см, а высота каждой боковой грани, проведенная из вершины пирамиды, равна 41 см. а) Докажите, что высота пирамиды проходит через центр окружности, вписанной в ее основание; б) Найдите площадь основания пирамиды, е
247. Двугранные углы при основании пирамиды равны. Докажите, что: а) высота пирамиды проходит через центр окружности, вписанной в основание; б) высоты всех боковых граней, проведенные из вершины пирамиды, равны; в) площадь боковой поверхности пирамиды рав
248. Основанием пирамиды является треугольник со сторонами 12 см, 10 см и 10 см. Каждая боковая грань наклонена к основанию под углом 45°. Найдите площадь боковой поверхности пирамиды.
249. В пирамиде все боковые ребра равны между собой. Докажите, что: а) высота пирамиды проходит через центр окружности, описанной около основания; б) все боковые ребра пирамиды составляют равные углы с плоскостью основания.
|
|
| |
Чилик | Дата: Четверг, 26.01.2017, 11:32 | Сообщение # 27 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| 250. Основанием пирамиды является равнобедренный треугольник с углом 120°. Боковые ребра образуют с ее высотой, равной 16 см, углы в 45°. Найдите площадь основания пирамиды.
251. Основанием пирамиды DABC является прямоугольный треугольник с гипотенузой ВС. Боковые ребра пирамиды равны друг другу, а ее высота равна 12 см. Найдите боковое ребро пирамиды, если ВС = 10 см.
252. Основанием пирамиды DABC является равнобедренный треугольник ABC, в котором АВ = АС, ВС=6 см, высота АН равна 9 см. Известно также, что DA = DB = DC=13 см. Найдите высоту пирамиды.
253. Основанием пирамиды является равнобедренная трапеция с основаниями 6 см и 4√6 см и высотой 5 см. Каждое боковое ребро пирамиды равно 13 см. Найдите ее высоту.
254. В правильной Треугольной пирамиде сторона основания равна а, высота равна Н. Найдите: а) боковое ребро пирамиды; б) плоский угол при вершине пирамиды; в) угол между боковым ребром и плоскостью основания пирамиды; г) угол между боковой гранью и основа
255. В правильной треугольной пирамиде сторона основания равна 8 см, а плоский угол при вершине равен φ. Найдите высоту пирамиды.
256. В правильной четырехугольной пирамиде сторона основания равна m, а плоский угол при вершине равен α. Найдите: а) высоту пирамиды; б) боковое ребро; в) угол Между боковой гранью и плоскостью основания; г) двугранный угол при боковом ребре пирами
257. Высота правильной треугольной пирамиды равна h, а двугранный угол при стороне основания равен 45°. Найдите площадь поверхности пирамиды.
258. Боковое ребро правильной четырехугольной пирамиды образует угол в 60° с плоскостью основания. Найдите площадь поверхности пирамиды, если боковое ребро равно 12 см.
259. В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60°. Найдите боковое ребро пирамиды.
260. В правильной треугольной пирамиде DABC через боковое ребро DC и высоту DO пирамиды проведена плоскость α. Докажите, что: а) ребро АВ перпендикулярно к плоскости α; б) перпендикуляр, проведенный из вершины С к апофеме грани ADB, является п
|
|
| |
Чилик | Дата: Четверг, 26.01.2017, 11:33 | Сообщение # 28 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| 261. Докажите, что в правильной треугольной пирамиде скрещивающиеся ребра взаимно перпендикулярны.
262. Докажите, что плоскость, проходящая через высоту правильной пирамиды и высоту боковой грани, перпендикулярна к плоскости боковой грани.
263. В правильной пирамиде MABCD точки К, L и N лежат на ребрах ВС, МС и AD, KN||BA, KL||BM. а) Покройте сечение пирамиды плоскостью KLN и определите вид сечения. б) Докажите, что плоскость KLN параллельна плоскости АМВ.
264. Найдите площадь боковой поверхности правильной шестиугольной пирамиды, если сторона ее основания равна а, а площадь боковой грани равна площади сечения, проведенного через вершину пирамиды и большую диагональ основания.
265. В правильной треугольной пирамиде боковое ребро наклонено к плоскости основания под углом 60°. Через сторону основания проведена плоскость под углом 30° к плоскости основания. Найдите площадь сечения, если сторона основания равна 12 см.
266. Основанием пирамиды, высота которой равна 2 дм, а боковые ребра равны друг другу, является прямоугольник со сторонами 6 дм и 8 дм. Найдите площадь сечения, проведенного через диагональ основания параллельно боковому ребру.
267. Пирамида пересечена плоскостью, параллельной основанию. Докажите, что боковые ребра и высота пирамиды делятся этой плоскостью на пропорциональные части.
268. Плоскость, параллельная плоскости основания правильной четырехугольной пирамиды, делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды. Апофема полученной усеченной пирамиды равна 4 дм, а площадь ее полной поверхности равна 186 дм2. Найди
269. Стороны оснований правильной треугольной усеченной пирамиды равны 4 дм и 2 дм, а боковое ребро равно 2 дм. Найдите высоту и апофему пирамиды.
270. Основаниями усеченной пирамиды являются правильные треугольники со сторонами 5 см и 3 см. Одно из боковых ребер перпендикулярно к плоскости основания и равно 1 см. Найдите площадь боковой поверхности усеченной пирамиды.
|
|
| |
Чилик | Дата: Четверг, 26.01.2017, 11:34 | Сообщение # 29 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| Глава III Многогранники. § 2. Пирамида ПРАКТИЧЕСКИЕ ЗАДАНИЯ
271. На рисунке 88 изображена развертка правильного тетраэдра. Перерисуйте ее на плотный лист бумаги в большем масштабе. вырежьте развертку и склейте из нее тетраэдр*.
272. На рисунке 89 изображена развертка куба. Перерисуйте ее на плотный лист бумаги в большем масштабе, вырежьте развертку и склейте из нее куб.
273. На рисунке 90 изображена развертка правильного октаэдра. Перерисуйте ее на плотный лист бумаги в большем масштабе, вырежьте развертку и склейте из нее октаэдр.
274. На рисунке 91 изображена развёртка правильного додекаэдра. Перерисуйте её на плотный лист бумаги в большем масштабе, вырежьте развертку и склейте из нее додекаэдр.
275. На рисунке 92 изображена развертка правильного икосаэдра. Перерисуйте ее на плотный лист бумаги в большем масштабе, вырежьте развертку и склейте из нее икосаэдр.
|
|
| |
Чилик | Дата: Четверг, 26.01.2017, 11:35 | Сообщение # 30 |
Подполковник
Группа: Проверенные
Сообщений: 103
Награды: 0
Репутация: 0
Статус: Offline
| Глава III Многогранники. § 2. Пирамида ВОПРОСЫ И ЗАДАЧИ
276. Сколько центров симметрии имеет: а) параллелепипед; б) правильная треугольная призма; в) двугранный угол; г) отрезок?
277. Сколько осей симметрии имеет: а) отрезок; б) правильный треугольник; в) куб?
278. Сколько плоскостей симметрии имеет: а) правильная четырехугольная призма, отличная от куба; б) правильная четырехугольная пирамида; в) правильная треугольная пирамида?
|
|
| |