Lien | Дата: Воскресенье, 12.11.2017, 17:13 | Сообщение # 1 |
Полковник
Группа: Проверенные
Сообщений: 248
Награды: 0
Репутация: 0
Статус: Offline
| Как найти доверительный интервал
Целью любых статистических расчетов является построение вероятностной модели того или иного случайного события. Это позволяет собрать и проанализировать данные о конкретных наблюдениях или экспериментах. Доверительный интервал используется при небольшой выборке, что позволяет определить высокую степень надежности. Как найти доверительный интервал
Вам понадобится - таблица значений функции Лапласа.
Инструкция
1 Доверительный интервал в теории вероятностей служит для оценки математического ожидания. По отношению к конкретному параметру, анализируемому статистическими методами, это такой интервал, который перекрывает значение этой величины с заданной точностью (степенью или уровнем надежности).
2 Пусть случайная величина х распределена по нормальному закону и известно среднеквадратическое отклонение. Тогда доверительный интервал равен: m(x) – t·σ/√n Функция Лапласа используется в приведенной формуле для того, чтобы определить вероятность попадания значения параметра в данный интервал. Как правило, при решении подобных задач требуется либо вычислить функцию через аргумент, либо наоборот. Формула для нахождения функции представляет собой довольно громоздкий интеграл, поэтому для облегчения работы с вероятностными моделями используйте готовую таблицу значений.
Пример:Найти доверительный интервал с уровнем надежности 0,9 для оцениваемого признака некой генеральной совокупности х, если известно, что среднеквадратическое отклонение σ равно 5, выборочное среднее m(x) = 20, объем n = 100.
Решение:Определите, какие величины, участвующие в формуле, вам неизвестны. В данном случае это математическое ожидание и аргумент Лапласа.
По условию задачи значение функции равно 0,9, следовательно, определите t из таблицы:Φ(t) = 0,9 → t = 1,65.
Подставьте все известные данные в формулу и вычислите доверительные пределы:20 – 1,65·5/10
3 Функция Лапласа используется в приведенной формуле для того, чтобы определить вероятность попадания значения параметра в данный интервал. Как правило, при решении подобных задач требуется либо вычислить функцию через аргумент, либо наоборот. Формула для нахождения функции представляет собой довольно громоздкий интеграл, поэтому для облегчения работы с вероятностными моделями используйте готовую таблицу значений.
4 Пример:Найти доверительный интервал с уровнем надежности 0,9 для оцениваемого признака некой генеральной совокупности х, если известно, что среднеквадратическое отклонение σ равно 5, выборочное среднее m(x) = 20, объем n = 100.
5 Решение:Определите, какие величины, участвующие в формуле, вам неизвестны. В данном случае это математическое ожидание и аргумент Лапласа.
6 По условию задачи значение функции равно 0,9, следовательно, определите t из таблицы:Φ(t) = 0,9 → t = 1,65.
7 Подставьте все известные данные в формулу и вычислите доверительные пределы:20 – 1,65·5/10
|
|
| |